Entrer un problème...
Algèbre linéaire Exemples
Étape 1
Étape 1.1
Déterminez où l’expression est indéfinie.
Étape 1.2
Comme comme depuis la gauche et comme depuis la droite, est une asymptote verticale.
Étape 1.3
Ignorez le logarithme et étudiez la fonction rationnelle où est le degré du numérateur et est le degré du dénominateur.
1. Si , alors l’abscisse, , est l’asymptote horizontale.
2. Si , alors l’asymptote horizontale est la droite .
3. Si , alors il n’y a pas d’asymptote horizontale (il existe une asymptote oblique).
Étape 1.4
Il n’y a pas d’asymptote horizontale car est .
Aucune asymptote horizontale
Étape 1.5
Aucune asymptote oblique n’est présente pour les fonctions logarithmiques et trigonométriques.
Aucune asymptote oblique
Étape 1.6
C’est l’ensemble de toutes les asymptotes.
Asymptotes verticales :
Aucune asymptote horizontale
Asymptotes verticales :
Aucune asymptote horizontale
Étape 2
Étape 2.1
Remplacez la variable par dans l’expression.
Étape 2.2
Simplifiez le résultat.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
La base logarithmique de est .
Étape 2.2.1.2
Multipliez par .
Étape 2.2.2
Additionnez et .
Étape 2.2.3
La réponse finale est .
Étape 2.3
Convertissez en décimale.
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
La base logarithmique de est .
Étape 3.2.1.2
Multipliez par .
Étape 3.2.2
Additionnez et .
Étape 3.2.3
La réponse finale est .
Étape 3.3
Convertissez en décimale.
Étape 4
Étape 4.1
Remplacez la variable par dans l’expression.
Étape 4.2
Simplifiez le résultat.
Étape 4.2.1
Simplifiez chaque terme.
Étape 4.2.1.1
La base logarithmique de est .
Étape 4.2.1.2
Multipliez par .
Étape 4.2.2
Additionnez et .
Étape 4.2.3
La réponse finale est .
Étape 4.3
Convertissez en décimale.
Étape 5
La fonction logarithme peut être représentée graphiquement en utilisant l’asymptote verticale sur et les points .
Asymptote verticale :
Étape 6